

'INNOVATORS IN MAGNETICS TECHNOLOGY"

- **PM-CIXX CURRENT SENSE** INDUCTORS
- Designed for Switch Mode Power Supply Applications
 Tapped and Untapped Versions
- Prequency Range from 10KHz to 200KHz
- 3 Fully Encapsulated Construction

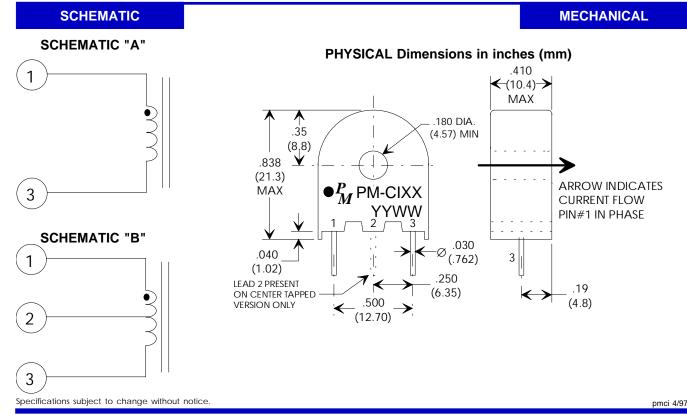
- **5** 2500Vrms Minimum Isolation Voltage
- 6 Center Hole for Primary Lead

ELECTRICAL SPECIFICATIONS AT 25°C - OPERATING TEMPERATURE RANGE -40°C TO +80°C

CONTROL VALUES					EREN		UES	CALC. VALUES		
PART NUMBER	TURNS N _s +1%	INDUCTANCE L _s (mH Min.)	DCR R _s (Ohms Max.)	I _{РК} (Amps)	R _T (Ohms)	K _v (Volt/Amp)	DROOP (%)	FLUX FACTOR K _B	LOSS FACTOR K _L	SCHEMATIC
PM-CI01	50	5.0	0.70	35	15	0.30	2.4	273.97x10 ³	3.31x10 ⁻⁹	А
PM-CI02	100	20.0	1.40	50	50	0.50	2.0	68.49x10 ³	3.33x10 ⁻⁹	A
PM-CI03	200	80.0	4.50	50	200	1.00	2.0	17.12x10 ³	3.35x10 ⁻⁹	A
PM-CI04	300	180.0	9.00	75	300	1.00	1.4	7.61x10 ³	3.37x10 ⁻⁹	A
PM-CI05	50ct	5.0	0.70	35	15	0.30	2.4	273.97x10 ³	3.31x10 ⁻⁹	В
PM-CI06	100ct	20.0	1.40	50	50	0.50	2.0	68.49x10 ³	3.33x10 ⁻⁹	В
PM-CI07	200ct	80.0	4.50	50	200	1.00	2.0	17.12x10 ³	3.35x10 ⁻⁹	В
PM-CI08	300ct	180.0	9.00	75	300	1.00	1.4	7.61x10 ³	3.37x10 ⁻⁹	В

REFER TO CALCULATION EXAMPLE FOR PM-CIXX SERIES ON PAGE 2 OF THIS DATA SHEET.

1) REFERENCE VALUES ARE FOR UNIPOLAR OPERATION @ 50KHz, 40% DUTY CYCLE (Dmax = .40).


THE MAXIMUM USABLE PEAK SENSE CURRENT (I_{pk}) IS DEPENDENT ON CORE SATURATION FACTORS AND SHOULD BE EVALUATED FOR THE ACTUAL OPERATING CONDITIONS. SEE APPLICATION DATA AND EXAMPLE ON PAGE 51.

3) THE MAXIMUM RECOMMENDED OPERATING FLUX DENSITY (B_{OP}) @ AN OPERATING TEMPERATURE OF 105°C IS 2000 GAUSS.

4) THE TERM. RESISTOR (R.) CAN BE VARIED TO ADJUST THE OPERATING FLUX DENSITY (BOP), DROOP, AND SCALE FACTOR (K.).

5) THE SCALE FACTOR (K_{ij}) is proportional to the terminating resistor (R_{τ}) and is equal to 1/0LT/AMP when $R_{\tau} = \dot{N}_{s}$

6) SECONDARY INDUCTANCE IS MEASURED AT 20KHz, 1.0VRMS.

20381 BARENTS SEA CIRCLE, LAKE FOREST, CA 92630 • TEL: (949) 452-0511 • FAX: (949) 452-0512 • http://www.premiermag.com

'INNOVATORS IN MAGNETICS TECHNOLOGY"

APPLICATION EXAMPLE

PM-CIXX CURRENT SENSE INDUCTORS

APPLICATION EXAMPLE

GIVEN: Part# = PM-CI02 Peak Current (I_{PK}) = 30.0 Amps Terminating Resistor (R_T) = 100 Ohms Operating Frequency (f) = 100KHz Duty Cycle (Dmax) = .40 (40% on time)

CALCULATE OPERATING FLUX DENSISTY

From the Table the FLUX FACTOR is: $K_{_{\rm B}} = 68.49 \text{ x} 10^3$

Flux Utilization Constant (K_F) is: 1.0 For Unipolar Operation 2.0 For Bipolar Operation

THEN: $B_{OP} = K_{B} \times I_{PK} \times R_{T} \times (Dmax / K_{F} \times f)$

- = 68.49x10³ x 30 x 100 x (.4 / 1 x 100x10³)
- = 822 gauss (OK less than 2000 gauss)

CALCULATE PULSE DROOP

From the Table the Secondary Inductance is: $L_s = 20mHy$ Minimum

Note: The actual droop is dependent on the actual $\rm L_{s}$ in the circuits enviorment.

Droop Exponent (D) = $R_T \times Dmax / (L_S \times f)$

 $= 100 \times .4 / (20 \times 10^{-3} \times 100 \times 10^{3})$ = 0.020

THEN: %_Droop = (1-e^{-D}) x 100

Specifications subject to change without notice

= 1.98 %OK less than 10%(Depending on the applicationDroop to 20% may be acceptable)

CALCULATE THE SCALE FACTOR

From the Table the Secondary Turns are: $N_s = 100$

THEN: $K_v = R_T / N_s$

= 100 / 100

= 1 volt/amp

ESTIMATE ERROR DUE TO LOSSES

From the Table the Secondary DCR is: $R_s = 1.40$ Ohms Maximum

From the Table the approximate Loss Factor is: $K_{_{1}} = 3.33 \times 10^{-9}$

Note: The loss factor (K_L) is valid approximation from10KHz to 200KHz

Secondary Copper Losses are: $P_{loss_s} = (I_{PK} / N_s)^2 x R_s$

 $= (30/100)^2 \times 1.40$

= 0.126 Watt

Core losses are: $P_{loss_{c}} = K_{L}^{2} x f^{1.621} x B_{OP}^{2.569}$

 $= (3.33 \times 10^{-9})^2 \times (100 \times 10^3)^{1.621} \times 822^{2.569}$

= 0.0435 Watt

Output Power is:

_out_s =
$$(I_{PK} / N_s)^2 \times R_T$$

= $(30/100)^2 \times 100$

THEN: %_Error = $[(P_{loss} + P_{loss}) / P_{out}] \times 100$ = $[(.126 + .0435) / 9] \times 100$ = 1.88 %

20381 BARENTS SEA CIRCLE, LAKE FOREST, CA 92630 • TEL: (949) 452-0511 • FAX: (949) 452-0512 • http://www.premiermag.com

Ρ